cosense3d.agents.utils package
Submodules
cosense3d.agents.utils.deco module
cosense3d.agents.utils.transform module
- class cosense3d.agents.utils.transform.DataOnlineProcessor[source]
Bases:
object
- static adaptive_free_space_augmentation(data: dict, min_h: float = -1.5, steps: int = 20, alpha: float = 0.05, res: float = 0.5, time_idx: int = None)[source]
Add free space points according to the distance of points to the origin.
lidar origin -> * * * * * h * ele * ************ d
Assume the \(\theta = \frac{\\pi}{2} - \text{ele}\) (elevation angle), \(\alpha\) = average angle between two lidar rings, \(d_k\) is the ground distance of the \(n_{th}\) lidar ring to lidar origin, \(k=1,...,n\), \(\delta_d\) is the distance between two neighboring lidar rings, then
\[\begin{split}d &= h \tan(\theta) \\ \delta_d &= d_n - d_{n-1} = d_n - h\tan(\arctan(\frac{h}{d_n}) - \alpha)\end{split}\]we sample free space points in the ground distance of \(\delta_d\) relative to each ring with the given ‘step’ distance.
- Parameters:
data – input data dict containing ‘points’.
min_h – minimum sample height relative to lidar origin. Default is -1.5.
steps – number of points to be sampled for each lidar ray. Default is 20.
alpha – average angle offset between two neighboring lidar casting rays. Default is 0.05.
res – resolution for down-sampling the free space points. Default is 0.5.
time_idx – if provided, time will be copied from the original points to free space points.
- Returns:
updated data.
- static cav_aug_transform(data, transform, aug_params, apply_to=['points', 'imgs', 'annos_global'])[source]
- static free_space_augmentation(data, d: float = 10.0, h: float = -1.5, step: float = 1.5, res=0.25)[source]
- static generate_sparse_target_bev_points(data: dict, transform=None, sam_res=0.4, map_res=0.2, range=50, max_num_pts=3000, discrete=False)[source]