Source code for cosense3d.utils.tensor_utils

import torch
import numpy as np


[docs]def pad_list_to_array_torch(data): """ Pad list of numpy data to one single numpy array :param data: list of np.ndarray :return: np.ndarray """ B = len(data) cnt = [len(d) for d in data] max_cnt = max(cnt) out = torch.zeros((B, max_cnt,) + tuple(data[0].shape[1:]), device=data[0].device, dtype=data[0].dtype) for b in range(B): out[b, :cnt[b]] = data[b] return out
[docs]def check_numpy_to_torch(x): if isinstance(x, np.ndarray): return torch.from_numpy(x).float(), True return x, False